# Realism of cloud structures in LES and its use for cloud and radiation parameterizations

Pier Siebesma (siebesma@knmi.nl)

Stephan de Roode (roode@knmi.nl)

Alexander. Los (los@knmi.nl)

KNMI, De Bilt, The Netherlands.

Harm J. Jonker (h.jonker@ws.tn.tudelft)

**Technical University Delft, The Netherlands** 

Roel Neggers (neggers@ecmwf.int)

ECMWF, Reading, UK

For details see: Siebesma and Jonker: Phys Rev Let. 85 p214 2000

Neggers et al: JAS 60 p1060 2003

De Roode et al: JAS 61 p403 2004





#### **Climate Model Development strategy**



Internationally embedded in: GEWEX Cloud System Systems (GCSS) (www.gewex.org/gcss.html)

| NA         |  |
|------------|--|
| <b>KNM</b> |  |

| Type                          | Case                   | Parameterization Issues adressed:                   |
|-------------------------------|------------------------|-----------------------------------------------------|
| Nocturnal Scu                 | FIRE<br>(1987)         | Top-entrainment                                     |
| Shallow Cu<br>(steady state)  | BOMEX<br>(1969)        | Mass flux, cloud cover, lateral entrainment         |
| Shallow Cu<br>topped with Scu | ATEX<br>(1971)         | Mass flux, cloud cover, lateral and top entrainment |
| Shallow Cu<br>(Diurnal Cycle) | ARM<br>(June 21, 1997) | Mass flux, cloud cover, lateral entrainment         |
| Scu<br>(Diurnal Cycle)        | FIRE<br>(1987)         | Top-entrainment,<br>Radiation                       |
| Scu<br>(precipitating)        | DYCOMS<br>(2001)       | Top-entrainment, Radiation, Precipitation           |







gisch Instituut

## LES widely used within GCSS to study turbulent transport in Cloud topped PBL



**But.....** 

••••

••••



#### 3. Is this a Cloud??



How to answer this question?





## **Area-Perimeter analyses of cloud patterns**

- Pioneered by Lovejoy (1981)
- Area-perimeter analyses using satellite and radar data
- •Suggest a perimeter dimension Dp=4/3 of projected clouds



## 4. Similar analysis with LES clouds



•Measure Surface  $A_s$  and linear size  $l \cong V^{1/3}$  of each cloud

•Plot in a log-log plot

•  $A_s \propto l^{D_s}$ 



Assuming isotropy, observations would suggest Ds=Dp+1=7/3





#### 5. Result of one cloud field







## Repeat over 6000 clouds



#### 7. Consequences



•Surface area can be written as a function of resolution I:

$$S(l) = S_L \left(\frac{l}{L}\right)^{2-D_s} \quad with \ D_s \approx 7/3$$

•Euclidian area SL underestimates true cloud surface area S(I=h) by a factor  $(\eta/L)^{2-D_s} \approx 100$ 

•LES model resolution of I=50m underestimates cloud surface area still by a factor 5!

## 8. Resolution dependence $l_0$ for transport over cloud boundary (1)



Transport = Contact area x Flux

$$T(l_0) = S(l_0) F(l_0) \cong -S(l_0) K(l_0) \frac{\partial c}{\partial x}$$



## 8. Consequences for transport over cloud boundary (2)



$$T(l_0) = S(l_0) F(l_0) \cong -S(l_0) K(l_0) \frac{\Delta c}{l_0}$$

$$S(l_0) = S_L \left(\frac{l_0}{L}\right)^{2-D_s} K(l_0) = l_0 \delta u(l_0) \propto l_0 \delta u(L) \left(\frac{l_0}{L}\right)^{1/3}$$
(Richardson Law)

$$T(l_0) = \Delta c \, \delta u(L) S(L) \left(\frac{l_0}{L}\right)^{7/3 - D_s}$$
!!!!!

No resolution dependancy for Ds=7/3!! Coincidence??

#### **Conclusions**



- LES models simulate the correct cloud geometry
- •Cloud surface dimension D\_s = 7/3
- •Transport over cloud boundaries are scale independent within LES
- •Repeating scaling arguments for  $I_0$ =h can be used as a heuristic proof for D\_s = 7/3 (Use Reynolds number similarity (Sreenivasan et al, Proc Soc. London (1989)

#### Cloud size distributions



•Many observational studies:

•Exponential (Plank 1969, Wielicki and Welch 1986)

•Log-normal (Lopez 1977)

•Power law (Cahalan and Joseph 1989, Benner and Curry 1998)



#### •••• Cloud size distributions (2)



- Repeat with LES. Advantages
  - Controlled conditions
  - Statistics can be made arbitrary accurate
  - Link with dynamics can be established

| N(1)



- •Specific Questions:
  - •What is the functional form of the pdf?
  - •What is the dominating size for the cloud cover?
  - •Which clouds dominate the vertical transport?

## **Definitions:**





Projection area of cloud n:  $A_n^p$ 

Size: 
$$l_n = \sqrt{A_n^p}$$

Total number of clouds:  $N = \int N(l) dl$ 

$$\mathbf{N} = \int_{0}^{\infty} N(l) dl$$

Cloud fraction:

$$\mathbf{a} = \int_{0}^{\alpha} \alpha(l) dl$$

Related through: 
$$\alpha(l) = \frac{l^2 N(l)}{L_x L_v}$$

## •••• Cloud Size Density





Typical Domain: 128x128x128

Number of clouds sampled: 35000

• Power law with b=-1.7  $N(l) \propto l^b$ 

•Scale break in all cases

• Scale break size  $l_d$  case dependant (700m $\sim$ 1250m)

## ··· Cloud size density (2)





•Universal pdf when rescaled with scale-break size Id

 $\bullet \bullet \bullet \bullet$ 

## Cloud Fraction density





$$\alpha(l) = N(l)l^2 \propto l^{b+2}$$

With b=-1.7 (until scale break size)

- b<-2 smallest clouds dominate cloud cover
- b>-2 largest clouds dominate cloud cover

Due to scale break there is a intermediate dominating size

#### Conclusions



- •Cloud size distribution:  $N(l) \propto l^b$  with b=-1.7
- •Non-universal scale break size beyond which the number density falls off stronger. (Only free parameter left)
- No resolution dependency has been found (see paper)
- •Intermediated cloud size has been found which dominates the cloud fraction.

#### **Open Questions:**

- •What is the physics behind the power law of the cloud density distribution?
- •What is causing the scale break?

## How to use this cloud variability to build cloud and radiation parameterizations? :







#### Statistical cloud schemes



## Statistical Cloud Schemes (2):



#### Convenient to introduce:

"The distance to the saturation curve"

$$s \equiv q_t - q_s(p, T)$$

Normalise s by its variance:

$$Q \equiv \bar{t} \equiv \frac{\overline{q}_t - \overline{q}_s}{\sigma_s}$$
 Sommeria and Deardorf (JAS,1976)

••••

## •••• Verification (with LES)





Bechtold and Cuijpers JAS 1995 Bechtold and Siebesma JAS 1999

$$Q \equiv \bar{t} \equiv \frac{\overline{q}_t - \overline{q}_s}{\sigma_s}$$

## Verification (with Observations)





Wood, Field and Cotton 2002 Atm. Research

## Remarks:



- 1. Gaussian PDF "good enough" to estimate liquid water and cloud cover.
- 2. Correct limit: if  $dx \Rightarrow 0$  then  $\sigma_s \Rightarrow 0$  and the scheme converges to the all-or-nothing limit
- 3. Parameterization problem reduced to finding the subgrid variability, i.e. finding  $\sigma_s$ .





$$a_{c} = f(\frac{\overline{q}_{t} - \overline{q}_{s}}{\sigma_{s}})$$

$$q_{l} = g(\frac{\overline{q}_{t} - \overline{q}_{s}}{\sigma_{s}})$$

 $R(\overline{q}_t, \sigma_s)$ 

**Convection and** turbulence parameterization give estimate of  $\sigma_s$ 

**Cloud scheme:** 

radiation scheme: McICA by employing the variance

•Subgrid variability (at least the 2<sup>nd</sup> moment) for the thermodynamic variables needs to be taken into acount in any GCM for parameterizations of convection, clouds and radiation in a consistent way.

•At present this has not be accomplished in any GCM.

#### ••••• How does the variability change with resolution?





Calculate in LES :  $\left\langle \sigma_q(l) \right\rangle$ 





No growth of  $\langle \sigma_q(l) \rangle$ For size l > 5 km





## .... How about Stratocumulus?



#### Observations give:

Standard deviation of s (=qt-qs) scales as s ~ L<sup>1/3</sup>

from 100m up to 100km, consistent with a 5/3 spectrum over this range.

Mesoscale Organisation!!

How about LES??

• • • • Wood, Field and Cotton 2002 Atm. Research Davies, Marshak and Cahalan JAS 53 1996

#### • • • •

## Large-Eddy Simulations



- •Parallelized version
- Large horizontal domain 25.6 x 25.6 km<sup>2</sup>
- Number of grid points 256 x 256 x 80
- $\Delta x = \Delta y = 100 \text{m}$ ,  $\Delta z < 20 \text{ m}$
- Cylic boundary conditions
- Simulation time 10 hours

Nocturnal stratocumulus cloud layer, initialization based on observations (FIRE I)



# LES does show mesoscale growth

Liquid water path evolution in stratocumulus simulation











t = 8 hrs





#### Same analysis as Wood et. al



$$\frac{\sigma_s^2(l)}{\sigma_s^2(l_0)}$$
 vs  $l (\propto l^{2/3})$ 

Variance grows with scale and time

•But .... Not with the expected scaling!!



#### **Conclusions**

- LES does produce realistic cloud structures
- •GCSS provides a large data set of 3d cloud scenes that can be used for radiative transfer studies
- •GCM's are still in a poor state concerning cloud inhomogeneity effects
- •Simultaneous measurements of cloud structures and radiation measurements offers a strong constraint for cloud-radiation effects that will reduce the infamous "tuning-freedom"





•ATEX:

Marine

Cumulus

Topped

With

Scu



**Courtesy: Dave Stevens; Lawrence Livermore National Laboratory** 

#### **EUROCS** Model Evaluation:

#### Hadley Circulation in the Pacific:

- Well defined large scale circulation
- Monthly mean deviations from climatology relatively small
- All studied cloud types within EUROCS are present in well geographically seperated way.
- Future Changes in Climate for Europe are connected with changes in the Hadley Circulation (see Dutch Challenge Project)

#### Use JJA 1998 as an example:



Monthly means for JJA 1998 for 13 gridpoint columns. required output: vertical profiles single level parameters

(Siebesma and coauthors:QJRMS november 2004.)

www.knmi.nl/samenw/eurocs

## Liquid water Path



ECMWF, RACMO: too high

**MetO** : too low **Too high** 

**Too low** 

### Surface downward shortwave Radiation



RACMO2

# Liquid water Path



ECMWF, RACMO: too high

**MetO** : too low **Too high** 

**Too low** 

## Scatter plot: LWP versus Transmissivity.





$$T = \frac{\langle F_{rad,sw,down,srf} \rangle}{\langle F_{rad,sw,down,toa} \rangle}$$

#### With:

<..> = monthly time averages over [9hr,15hr] local time

 Clouds in MetO and ECHAM are too reflective

Differences in radiation schemes! Tuning?!





LES run of diurnal cycle of cumulus: ARM site Oklahoma June 21 1997



• • • •



Intercomparison results for 1D-model versions of GCM's

(for details see http://www.knmi.nl/samenw/eurocs)



• • •

• • • •







• • • •







1000.

a)

2.

0.

10.

log( 🔏 )



F



Not a complete demonstration of the fact that clouds are fractal! Nature could play the following trick om us:





### 6. Direct measurement of correlation dimension

$$C(l) = \sum_{i,j} \theta \left( - \left| \vec{x}_i - \vec{x}_j \right| \right) \propto \ell^{D_s}$$

$$10^5$$

$$10^4$$

$$10^4$$

$$10^3$$

$$50 \quad 100 \quad 200300 \quad 500 \quad 1000 \quad 2000$$

$$1 \text{ [m]}$$

### Large Eddy Simulation (LES) Modelling



- High Resolution Non-hydrostatic Model: ~50m
- Large eddies explicitly resolved by NS-equations
- inertial range partially resolved
- Therefore: subgrid eddies can be realistically parametrised by using Kolmogorov theory



# **CLOUDS** in GCM's: What are the problems?





•Many of the observed clouds and especially the processes within them are of sub gridscale size.

50 km



# Neglecting this subgrid variability causes biased errors in a number of key processes:

- Moist convection of heat and moisture
- Cloud Properties
- •Radiative Transport

•••



Neglecting Cloud inhomogeneity causes a positive bias in the cloud albedo.

• • •



- •Subgrid variability (at least the 2<sup>nd</sup> moment) for the thermodynamic variables needs to be taken into acount in any GCM for parameterizations of convection, clouds and radiation in a consistent way.
- •At present this has not be accomplished in any GCM.
- •Large Eddy Simulations (LES) in combination with observations is a useful tool to obtain this subgrid variability and to help develop GCM parameterizations for these cloud related processes.
- •GEWEX Cloud System Studies (GCSS) explores this avenue (<a href="https://www.gewex.org/gcss.html">www.gewex.org/gcss.html</a>)

• • • •

### How to obtain a parameterization for the variance?

Link it to the convection/turbulence schemes using a variance KNMI budget:

#### Production Dissipation

$$\overline{w'q'_t} \frac{\partial q_t}{\partial z} = \tau^{-1} \overline{q'_t^{2}}$$

$$M(q_t^{cu} - \bar{q}_t) \frac{\partial \bar{q}_t}{\partial z} \cong \frac{w_*^{cu}}{l_{cloud}} \bar{q}_t^{'2}$$

$$\tau = l_{cloud} / w_*^{cu}$$

$$\tau = \underline{l}_{cloud} / w_*^{cu}$$

$$w_*^{cu} = \int_{cloud} \frac{g}{\theta} M \Delta \theta_v dz$$

Grant&Brown QJRMS 1999

Final Result: 
$$\overline{q_t'^2} \cong \frac{M(q_t^{cu} - \overline{q_t})}{w_*^{cu}} l_{cloud} \frac{\partial \overline{q_t}}{\partial z}$$

LES domain size: How large is large enough?







#### Spectra in stratocumulus

• Different domain sizes L